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Artificial Intelligence (AI) relies upon a convergence of technologies with further synergies with life
science technologies to capture the value of massive multi-modal data in the form of predictive models
supporting decision-making. AI and machine learning (ML) enhance drug design and development by
improving our understanding of disease heterogeneity, identifying dysregulated molecular pathways
and therapeutic targets, designing and optimizing drug candidates, as well as evaluating in silico
clinical efficacy. By providing an unprecedented level of knowledge on both patient specificities and
drug candidate properties, AI is fostering the emergence of a computational precision medicine
allowing the design of therapies or preventive measures tailored to the singularities of individual
patients in terms of their physiology, disease features, and exposure to environmental risks.
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Introduction
Drug development is a complex process that currently requires,
on average, 12 years of development and a US$2.6 billion invest-
ment per individual drug made available to the patient.1 Strin-
gent regulatory requisites to demonstrate drug efficacy and
safety result in a high attrition rate because of negative results
during their evaluation in costly clinical studies, with an esti-
mated 6.2% of drugs selected in the discovery phase eventually
made available to patients.2,3 In this context,AI-based predictive
modeling (see Glossary) is emerging as a revolutionary solution
to improve both the efficacy and speed of drug design and devel-
opment, most particularly by optimizing early on the choice of
therapeutic targets as well as drug candidates.3–5 AI can be
defined as a convergence of technologies recapitulating four
dimensions of human intelligence (i.e., sensing, thinking, act-
ing, and learning). As such, AI allows the integration of massive
amounts of multi-modal data, both structured and unstructured,
to build up probabilistic and dynamic models of a problem.
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As it applies to drug development, AI-driven predictive mod-
els can be generated by using specific sets of data to inform a ser-
ies of decisions taken throughout drug discovery, development,
and registration steps (Fig. 1). These steps include selecting the
right therapeutic target, the optimal drug candidate, the appro-
priate dosing and administration regimens, as well as the appro-
priate patients to include in clinical studies.3,5 By providing a
means to capture the value of data related to diagnosis, patient
characterization, drug candidate attributes, and prediction of
individual responses to therapy, AI enables a more personalized
approach, termed ‘precision medicine’, that is proposing treat-
ments better tailored to individual patient specificities.6,7

On this basis, we discuss herein four main applications of AI
to support drug design and development: (i) the generation of
disease models based on molecular profiling data from patients
to represent disease heterogeneity; (ii) the identification of dys-
regulated molecular pathways and of candidate therapeutic tar-
gets predicted to contribute to disease causality; (iii) the design,
synthesis, and optimization of drug candidates interacting with
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FIGURE 1
Decision-making during drug discovery, development, and registration. Key decisions to be taken as well as predictive models and examples of data sets
supporting those models are provided for the drug discovery, development, and registration phases. Abbreviations: ADMET, absorption, distribution,
metabolism, excretion, and toxicity; PD, pharmacodynamics; PK, pharmacokinetics.
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these targets; and (iv) the evaluation of clinical efficacy by using
virtual patients or real-world evidence data.
Capturing the value of big biomedical data
The recent and rapid advances in next-generation DNA, RNA,
and exome sequencing, multi-omics molecular profiling, high-
resolution medical imaging, and electronic capture technologies
make it possible to characterize at an unprecedented level the
specificities of individuals in terms of their physiology, patho-
physiology of their disease as well as their environmental risk
exposure. The Cancer Genome Atlas (TCGA), the Alzheimer’s
Disease Neuroimaging Initiative (ADNI), the Osteoarthritis
Initiative (OAI), and the UK Biobank projects are all examples
of this growing trend to integrate big data from large patient
populations to support drug development (Table S1 in the
supplemental information online). In the near future, such com-
prehensive molecular information will be available for millions
of patients across multiple diseases, together with exponential
data and knowledge compiled within hundreds of structured
biomedical databases, such as those managed by the European
Bioinformatics Institute (EBI) or the US National Center for
Biotechnology Information (NCBI) (Table S1 in the supplemen-
tal information online).

When trying to capture the value of those ever-increasing
amounts of data, the main challenges are linked to proper access
and selection of standardized and machine-readable data, as well
as to data complexity, heterogeneity, and sparsity. Integrating
massive and multi-modal data generated from multiple tech-
nologies with proper quality attributes in terms of consistency
2 www.drugdiscoverytoday.com
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and reliability remains a significant difficulty in data life-cycle
management (Fig. 2). Access to accurate and curated data in large
quantities is also key to improve ML repeatability. Solving those
problems requires setting up computing hardware architectures
adapted to life sciences specificities (Table S2 in the supplemental
information online), often deported into the cloud. To this end,
many initiatives, such as the Clinical Data Interchange Standards
Consortium (CDISC)8 or the FAIR guiding principles,9 have
emerged to enable the findability, accessibility, interoperability,
reusability, and exchange of data.10 In addition, the regulatory
requirements imposed in terms of access, storage, sharing of con-
fidential and sensitive health data by the European General Data
Protection Regulation (GDPR)11 and the US Health Information
Technology for Economic and Clinical Act impose the imple-
mentation of clear and operational data governance strategies
(Fig. 2).

In this context, precompetitive collaborative consortia
between pharmaceutical companies or academic labs, such as
MELLODDY12 or the Drug Target Commons,13 respectively, con-
stitute innovative federated knowledge initiatives to assemble,
curate, and share massive data of an appropriate quality for
developing ML algorithms. The MELLODY consortium brings
together several drug companies sharing their chemical libraries
to train multitask predictive algorithms, subsequently applied by
each individual partner in support of its own drug discovery pro-
gram. In parallel, multiple crowd-source challenges, such as the
Kaggle,14 Dream,15 and PrecisionFDA,16 challenges propose data
sets of reference to establish standards for benchmarking and
testing novel algorithms to address complex biomedical
problems.6
/doi.org/10.1016/j.drudis.2021.09.006
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AI and disease modeling
The convergence of biotechnologies and AI provides an opportu-
nity to create disease models to help positioning therapies in
well-defined patient subpopulations. Such models are generated
following extensive molecular profiling of patients compared
with healthy controls using multi-omics technologies to repre-
sent diseases as endotypes defined based upon underlying patho-
physiological mechanisms.17 These data are classically produced
during the follow-up of large cohorts of patients by public–pri-
vate partnerships, with patient stratification being performed
by using a combination of unsupervised and supervised
learning approaches. The rationale for such a clustering, as a
substitute to former classifications based solely upon clinical
phenotypes, is that it better supports a precision medicine
approach relying upon therapies targeted to well-defined sub-
groups of patients.18 To this aim, molecular profiling data
obtained in the blood and/or target organs of thousands of
patients with a given disease are combined with detailed clinical
information in terms of disease progression, severity, or response
to treatments to stratify patients in homogeneous subgroups
reflecting disease heterogeneity. Whereas the integration of such
massive and multi-modal data is not possible with conventional
bioinformatics, a comprehensive modeling of diseases can now
be made by using AI.19

To do so, the main computational challenges still lie in the
ability to: (i) integrate data coming from multi-omics technolo-
gies while reducing the multiplicity of their dimensions20,21;
(ii) decipher disease mechanisms at a single cell level22,23; (iii)
model the dynamic evolution of the disease24; and (iv) consoli-
date the findings through consensus and resampling
approaches to support their validity and replication.25 Following
gene set enrichment analyses within each cluster, patient sub-
groups can then be further characterized in terms of molecular
pathways being dysregulated.26 Specific databases (e.g., Ingenu-
ity Pathway Analysis and STRING) are used to regroup within
established functional molecular pathways genes or proteins that
are either up- or downregulated in patient samples compared
with healthy controls. Given that a disease is defined in molecu-
FIGURE 2
Biomedical data life-cycle management. Representation of a general biomedical
on the needs for more standardization and automation in data governance.
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lar terms in reference to normality, disease features need to be
identified beyond molecular polymorphisms observed in associ-
ation with the healthy state.

Overall, disease modeling can provide information on both
the natural history of the disease and the relationship between
pathophysiological mechanisms involved at both systemic and
organ-specific levels. Furthermore, it sheds light on patient
heterogeneity as well as on molecular signatures, which can be
used to cluster patients in homogeneous groups to envision a
precision medicine approach, taking into account patient speci-
ficities within clusters. Importantly, it also provides clues for fur-
ther in silico identification of targets of therapeutic interest.

Identification, prioritization, and validation of
therapeutic targets
Computational methods are being developed to identify disease-
associated genes or proteins predicted to be involved in the
causality of the disease, thus representing potential actionable
therapeutic targets. As a first step, molecular pathways dysregu-
lated in a given disease are represented in large-scale networks
of interconnected genes or proteins, either established from pro-
tein–protein interactions (PPIs)27 or reconstructed via inference
techniques, such as correlation or Bayesian networks.28,29 Such
networks are also often referred to as knowledge graphs, rep-
resenting knowledge as both concepts and relationships between
them. This representation allows the delineation of disease-
associated subnetwork modules serving as a basis for further
computational analyses of their intrinsic topology to identify
nodes predicted as ‘causal’ (including, for example, master regu-
lators, hubs, and driver mutations).19,30 In particular, network
propagation algorithms (also referred to as diffusion) are com-
monly used to amplify the signal of nodes for which little or no
direct evidence of disease association is available.31 As above,
main computational challenges involve the integration of mul-
tilayer networks obtained from different levels,32 as well as
the representation of large-scale dynamic information.33

Besides biological relevance, additional dimensions are con-
sidered to prioritize disease targets for further investigation, as
Drug Discovery Today
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illustrated by the Open Targets initiative.34 This includes: (i)
druggability (i.e., the likelihood of being able to modulate the
function of a target with a small synthetic or biological drug,
or any other therapeutic modality)35; (ii) potential safety implica-
tions when interfering with this target36; (iii) innovativeness
documented from patent and literature mining by using natu-
ral language processing (NLP)37; and (iv) feasibility of drug
development.38 The selection of targets can be facilitated by the
identification of features based on protein structure or sequence
suggesting that they can bind small molecules.4 Thus, the confir-
mation of target druggability significantly benefits from
advances in 3D-structure modeling,39 including the recent
improved prediction of protein structures by DeepMind’s Alpha-
Fold algorithm based on primary amino acid sequences.40

Candidate targets identified with inferences of causality in the
disease using network computing approaches need to be vali-
dated on the basis of empirical evidence generated in wet lab
experiments. This validation step, which includes, for example,
CRISPR-Cas9 gene deletion or siRNA gene silencing, phenotyp-
ing assessment of target expression on cells or tissues from
patients relative to healthy controls or functional assays con-
ducted in animal models, can be substantially simplified when
using computational predictive models. As a result, both cost
and timelines associated with drug discovery are reduced, while
strengthening the rationale for selecting the candidate target
before entering clinical development.
AI-enhanced drug design, selection, and optimization
Network-based proximity analyses allow the prediction of drug–
target interactions, which can be applied to the repurposing of
existing drugs in new indications.41,42 For instance, the
deepDTnet algorithm is based on a network-based deep learn-
ingmethodology for in silico identification of newmolecular tar-
gets for known drugs.43 DeepDTnet embeds 15 types of chemical,
genomic, phenotypic, and cellular networks to generate biologi-
cally and pharmacologically relevant features. AI is also generat-
ing considerable interest in the design or identification of new
compounds with desirable properties from virtual drug target
screens. Computational chemistry has been broadly used to doc-
ument quantitative structure–activity relationships (QSAR) with
the goal to predict activities in a chemical space potentially
encompassing millions of molecules. The QSAR field benefited
over the past decade from the combined application of deep
learning to neural networks with higher computational power
and better algorithms addressing the overfitting and gradi-
ent problems.44,45 ML methods are now applied to train neu-
ral networks on ligand-based virtual screens to identify and
optimize drugs interacting with candidate therapeutic targets,
predict their absorption, distribution, metabolism, excretion,
and toxicity (ADMET) characteristics, or repurpose existing
molecules.4,42,46

Interestingly, deep learning allows multitask prediction by
developing models encompassing more than one activity, such
as bioactivity and ADME properties. Whereas the prediction of
multiple activities can be trained in parallel, because they share
the same input and hidden layers, each activity is associated with
a specific output node (Fig. 3a). A Kaggle contest evaluating var-
4 www.drugdiscoverytoday.com
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ious ML approaches to improve the prediction performance of
QSAR methods was won by a multitask deep network yielding
a 15% improvement over baseline.47 Besides improving the accu-
racy of the prediction, multitask prediction based on deep learn-
ing further enhances drug discovery compared with classical ML
methods (such as Random Forrest or Support Vector Machine)
because the latter only predict a single property at a time. Instead
of solely relying upon on-the-shelf and expert-derived chemical
features, deep learning also allows the identification of novel
molecular descriptors. Whereas previous ML methods used
expert-compiled molecular descriptors to train the algorithms,
deep learning uses such features generated without any human
intervention with a form of image processing called graph con-
volution.48 Combining new molecular representations with mul-
titask prediction results in models outperforming classical QSAR
models.49 To better predict molecular activities, multitask
deep learning can also be applied to data from image analyses
generated during high-content screen (HCS) assays involving the
molecule itself. Such HCSs are a rich source of information,
which can be used in combination with molecular descriptors
to predict biological activities, while avoiding the need for cus-
tomized assays.50

Deep learning has also been applied to de novo molecule gen-
eration, with the molecule being designed by the model as
opposed to by the chemist. Whereas manual approaches were
previously used for evolving existing molecules by adding chem-
ical R groups or changing atoms, deep learning can be used to
train neural networks and generate new candidates based on pre-
viously known molecules. By adapting methods commonly
applied to image analysis or language translation, a first model
for de novo molecule generation with deep learning was built
up using a variational autoencoder encompassing both an
encoder and a decoder network (Fig. 3b). The role of the encoder
is to translate the chemical structure represented as a chain of
characters (e.g., SMILES) into a vector called latent space. The
decoder network then translates back from the latent space vec-
tors into SMILES to obtain refined chemical structures. A random
variation can be applied to the latent space or combined with
model prediction to identify a decoded molecule slightly differ-
ent from the input that fits the model criteria. Multiple applica-
tions of autoencoders and derivatives have been reported in
combination or not with the use of recurrent neural networks
(RNNs).51–53 Additional approaches to de novo molecule design
are being applied in computational chemistry, such as reinforce-
ment learning (RL), in which the network is trained step by step
to reach a specific output to maximize the notion of cumulative
reward.54 Another approach is to use generative adversarial net-
works (GAN) associating two neural networks that both compete
and collaborate in a zero-sum game to perform molecular feature
extraction from very large data sets. When applied to drug devel-
opment, the first ‘generative’ network generates candidate mole-
cules evaluated by the second ‘discriminative’ network.55–57

Despite many successes obtained in drug design by using de novo
molecule generation and multitask prediction, some of the mod-
els obtained still produce molecules that are difficult to synthe-
size. In this context, computational approaches have been
developed to support retrosynthesis, as a substitute of expert-
derived rules or knowledge-based systems built from chemical
/doi.org/10.1016/j.drudis.2021.09.006
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reaction databases, by decomposing the newly generated mole-
cule using reverse reactions to design its chemical synthesis.58,59

Deep learning has also been recently applied to support retrosyn-
thesis analysis using a sequence-to-sequence-based model, in
which the chemical structure is described as SMILES for RNN,
and the reactant and product are linked as a pair in an encoder
decoder.60 Other studies reported the use in this application of
either a reaction graph61 or a combination of three deep neural
networks with a Monte Carlo tree search.62
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Toward virtual clinical studies
AI can be used in support of the design, implementation, and
monitoring of clinical trials evaluating the efficacy and safety
of drug candidates, with the aim to improve success rates.63,64

For example, the selection of patient recruited in the trials is
facilitated by the understanding of disease and patient hetero-
geneity based on models previously discussed in the section on
AI and disease modeling. In addition, NLP is being used to mine
real-world evidence (RWE) data or health records to assess
patient eligibility in clinical studies.65 In this approach, auto-
mated text mining is used to identify and select patients precisely
fulfilling the inclusion criteria proposed in the study design, such
as level of disease severity, involvement of specific target organs,
and exposure to authorized background therapies. AI is also use-
ful to inform the design of innovative trials in a precision-
medicine approach by integrating massive biological, medical
FIGURE 3
Examples of deep learning networks used in molecular modeling and drug de
algorithm, on the left, with compounds used for the training and their associat
found, the algorithm yields as an output the full matrix prediction for all end
autoencoder, with the encoder on the left, the latent space in the middle, and the
molecules, the latent space can be modified (through random or focus variatio
autoencoder takes a SMILES as an input and produces a SMILES as the output.
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imaging, and clinical data to document patient specificities. Dur-
ing trial monitoring, AI helps to capture in a remote fashion
patient-reported measurements and outcomes generated by
wearable sensors or devices. It is also applied to mine such digital
biomarkers providing useful information regarding symptoms,
pain, cognitive function, motricity, or sleep patterns, to support
diagnostic or therapeutic decisions made by the physician.65,66

AI and ML are also being used to analyze data from successful,
but also failed studies to generate models capable of predicting
simultaneously the evolution of multiple and multimodal clini-
cal parameters.67 Those analyses can provide hypotheses regard-
ing candidate biomarkers predictive of progression, severity,
response to treatment, or even survival in the form of genome-
wide polygenic scores or multi-omics signatures.65,68,69

A mid-term perspective generating considerable interest is to
predict the efficacy of drug candidates from virtual trials. Cur-
rently, virtual representations of the characteristics of a patient
are assembled in the form of a ‘synthetic’ patient.70 Those mod-
els are particularly useful as substitutes for real patients when
assembling placebo control groups to test drug candidates in a
life-threatening or rare disease indication. The evolution of such
a virtual placebo group can be modeled from RWE clinical data
obtained from real patients affected by the condition, when
receiving the standard of care. Furthermore, with the aim of test-
ing the clinical efficacy of an experimental drug, in silico models
based on quantitative system pharmacology (QSP) are also being
developed, with some encouraging results.71,72 QSP models of a
Drug Discovery Today

sign. (a) Schematic representation of a multitask prediction deep learning
ed data. Once the network has been trained and the best hyperparameters
points on which it has been trained. (b) Schematic representation of an
decoder in the right. Once the autoencoder has been trained on millions of

n) to generate molecules close to the input, albeit with small changes. The
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disease of interest are built up from data related to biological pro-
cesses in the blood or in tissues in association with clinical symp-
toms. The obtained biological system is then modeled as
ordinary differential mathematical equations to represent
dynamic interactions between components, further incorporat-
ing some main characteristics of the drug candidate (e.g., affinity
for the target, pharmacokinetics, and biodistribution) to assess
how the latter will perturb the system. QSP is used not only to
predict how the drug could alleviate symptoms as it relates to
specific organs, but also to identify potential biomarkers to cate-
gorize or monitor patients, select dosing and administration reg-
imens as well as clinical endpoints to be used in the confirmatory
real-world trial.71,72 A remaining hurdle foreseen in implement-
ing successfully a ML-powered precision medicine is related to
the difficulty in establishing causal inferences, that is, to predict
from a data-driven model a causal effect of drug exposure on clin-
ical outcomes.7 However, the future availability of AI-generated
models of various diseases in the form of interactomes of genes
or proteins with inferences of causality in the pathophysiology
might considerably increase the capacity of in silico analyses to
predict both the efficacy and safety of drug candidates.73

A remaining challenge to the broad application of AI to clin-
ical studies remains the acceptance by major regulatory agencies
of such virtual placebo groups, synthetic patients, and digital
endpoints, as well as the validation of AI-based decision algo-
rithms. Obviously, irrespective of advances in this field, real-
world clinical studies will still be needed, likely fewer, simpler,
and better designed with the help of AI.

Concluding remarks
Considering drug development as a succession of important deci-
sions to be made to select the right target, drug, dosing regimen,
and patient, it appears obvious that AI can support each of those
decisions by capturing the value of massive and multimodal data
into useful predictive models. Thus, AI and ML will undoubtfully
produce an unprecedented revolution in drug development by
making this complex and costly process ultimately cheaper and
more effective, with both an anticipated shortening of the dis-
covery phase and a reduction in failure rates during drug devel-
opment. The health industry is now integrating those new
technologies at a fast pace, as reflected by the exponential
increase in the number of companies dedicated to AI applica-
tions to drug development (Table S2 in the supplemental infor-
mation online). In 2020, a first AI-designed drug in the field of
immuno-oncology entered Phase I clinical evaluation after only
12 months of research, compared with the 5–7 years commonly
required in drug discovery. A new antibiotic, named halicin,
has also been identified in record time using AI mining of exist-
ing molecules.74 Numerous opportunities for drug repurposing
6 www.drugdiscoverytoday.com
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generated by network computing have also been identified with
first applications to cancers, neurological diseases, and Coron-
avirus 2019 (COVID-19).4,42 Noteworthy, whereas ML has been
mostly applied to the design of chemical molecules, those meth-
ods are also being considered for the design and selection of bio-
logicals, including synthetic oligonucleotides, monoclonal
antibodies, or peptides with predicted pharmacological
properties.

Drug design and development encompass a range of existing
human expertise, and the synergy between human and machine
intelligences is vital for the successful enhancement of drug
design and development. Intelligent machines can provide
tremendous computing memory and power to conduct non-
supervised analyses from massive multimodal data. Whereas
deep learning methods are assimilated to black boxes, by con-
trast, humans are skilled at extracting features and providing
transparency on the rationale underlying classification tasks or
interpretability from the outputs of predictive models. Human
expertise is needed to design and perform validation experiments
in wet lab and real-world clinical studies. Importantly, human
intelligence and judgement are required to consider ethical
implications when implementing AI. The ultimate responsibility
of diagnostic or therapeutic decisions informed by algorithms
lies in healthcare professionals.

By helping to provide an unprecedented understanding of
patient characteristics, AI is paving the way for a highly person-
alized medicine offering the perspective of future therapies and
preventive measures precisely tailored to the needs of each indi-
vidual patient based on their physiology and disease specificities.
AI and ML also support the development of a medicine increas-
ingly more predictive through access to multidimensional mod-
els encompassing the disease, patient, and drug candidate, and
further participative by engaging patients and healthy individu-
als in managing their health. As such, we foresee the impact of AI
and ML in the form of a rapid evolution towards an integrated
computational precision medicine.
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Glossary

Artificial Intelligence (AI): any type of machine presenting a simple intelligence. In

computer science, AI is defined as a machine able to perform tasks requiring
human intelligence, such as visual perception, speech recognition, decision-
making, and language translation.

Autoencoder: neural network technique that performs dimensionality reduction. It
comprises an encoder part compressing and encoding data efficiently, and a
decoder part, which learns how to reconstruct the data back as close as possible to
the original.

Consensus: convergence between predictions obtained from different models, each of
them generated from either different data sources (e.g., multi-omics) or compu-
tational approaches (e.g., hierarchical, Gaussian, and k-means clusterings).

Data sparsity: computational challenge linked to the completeness of the observations
in a data set.

Deep learning: advanced algorithm mimicking the human brain by using artificial
neurons in a complex network.

Gradient problem: a gradient measures howmuch the output of a model changes when
inputs are modified. In gradient-based approaches, such as neural networks, gra-
dients are used during training to update some parameter weights. When the
magnitudes of the gradients accumulate, an unstable model is likely to occur,
which can lead to poor prediction results. Methods to manage exploding gradients
include gradient clipping and weight regularization.

Layer: structure in the architecture of the model, which enables information to be
taken from a previous layer and be passed on to the next one. Different types of
layer exist, such as fully connected or convolutional layers.
Machine learning (ML): use and development of algorithms based on sample data (e.g.,
experimental data), which can learn and adapt without human instructions to
analyze and draw inferences from patterns in data.

Multitask deep learning: process to solve multiple learning tasks simultaneously, while
exploiting commonalities and differences across each of them. Multitasking has
been used successfully across all applications of ML.

Natural language processing (NLP): treatment of human language by intelligent
machines to understand and extract relevant information from the content of data
sources, such as publications or patents.

Networks/knowledge graphs: set of entities or nodes (e.g., genes, proteins, drugs, or
diseases), connected to each other by relationships or links (e.g., gene–disease
association, protein–protein interaction, or drug–target interactions).

Network propagation: algorithms (e.g., random walk or information diffusion) used to
propagate data into the topology of a given network to amplify colocalized high
signals and support functional interpretation.

Overfitting: predictive model corresponding too closely to the data set on which it has
been trained, which therefore might fail to be validated in other data sets. Cross-
validation or bootstrapping resampling approaches are generally proposed to
reduce the overfitting effect.

Supervised learning: aims to create a prediction function based on labeled data (as
opposed to unsupervised learning); encompasses both classification learning based
on qualitative data and regression learning trained by using quantitative data.

Unsupervised learning: a mode of ML in which data are not labeled; aims to discove r
the underlying structures to label or group those unlabeled data.
/doi.org/10.1016/j.drudis.2021.09.006
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